Curso de Fine-Tuning AI for Healthcare: Medical Diagnosis and Predictive Analytics
Fine-tuning is a critical process for adapting pre-trained AI models to healthcare-specific diagnostic and predictive tasks.
This instructor-led, live training (online or onsite) is aimed at intermediate-level to advanced-level medical AI developers and data scientists who wish to fine-tune models for clinical diagnosis, disease prediction, and patient outcome forecasting using structured and unstructured medical data.
By the end of this training, participants will be able to:
- Fine-tune AI models on healthcare datasets including EMRs, imaging, and time-series data.
- Apply transfer learning, domain adaptation, and model compression in medical contexts.
- Address privacy, bias, and regulatory compliance in model development.
- Deploy and monitor fine-tuned models in real-world healthcare environments.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Programa do Curso
Introduction to AI in Healthcare
- Applications of AI in clinical decision support and diagnostics
- Overview of healthcare data modalities: structured, text, imaging, sensor
- Challenges unique to medical AI development
Healthcare Data Preparation and Management
- Working with EMRs, lab results, and HL7/FHIR data
- Medical image preprocessing (DICOM, CT, MRI, X-ray)
- Handling time-series data from wearables or ICU monitors
Fine-Tuning Techniques for Healthcare Models
- Transfer learning and domain-specific adaptation
- Task-specific model tuning for classification and regression
- Low-resource fine-tuning with limited annotated data
Disease Prediction and Outcome Forecasting
- Risk scoring and early warning systems
- Predictive analytics for readmission and treatment response
- Multi-modal model integration
Ethics, Privacy, and Regulatory Considerations
- HIPAA, GDPR, and patient data handling
- Bias mitigation and fairness auditing in models
- Explainability in clinical decision-making
Model Evaluation and Validation in Clinical Settings
- Performance metrics (AUC, sensitivity, specificity, F1)
- Validation techniques for imbalanced and high-risk datasets
- Simulated vs. real-world testing pipelines
Deployment and Monitoring in Healthcare Environments
- Model integration into hospital IT systems
- CI/CD in regulated medical environments
- Post-deployment drift detection and continuous learning
Summary and Next Steps
Requisitos
- An understanding of machine learning principles and supervised learning
- Experience with healthcare datasets such as EMRs, imaging data, or clinical notes
- Knowledge of Python and ML frameworks (e.g., TensorFlow, PyTorch)
Audience
- Medical AI developers
- Healthcare data scientists
- Professionals building diagnostic or predictive healthcare models
Precisa de ajuda para escolher o curso certo?
Curso de Fine-Tuning AI for Healthcare: Medical Diagnosis and Predictive Analytics - Enquiry
Fine-Tuning AI for Healthcare: Medical Diagnosis and Predictive Analytics - Solicitação de Consultoria
Solicitação de Consultoria
Próximas Formações Provisórias
Cursos Relacionados
Advanced Techniques in Transfer Learning
14 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a profissionais de aprendizado de máquina de nível avançado que desejam dominar técnicas de aprendizado de transferência de ponta e aplicá-las a problemas complexos do mundo real.
Ao final deste treinamento, os participantes serão capazes de:
- Compreender conceitos e metodologias avançadas na aprendizagem por transferência.
- Implementar técnicas de adaptação específicas do domínio para modelos pré-treinados.
- Aplicar a aprendizagem contínua para gerenciar tarefas e conjuntos de dados em evolução.
- Dominar o ajuste fino de várias tarefas para melhorar o desempenho do modelo em todas as tarefas.
Deploying Fine-Tuned Models in Production
21 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a profissionais de nível avançado que desejam implantar modelos ajustados de forma confiável e eficiente.
Ao final deste treinamento, os participantes serão capazes de:
- Compreender os desafios da implantação de modelos ajustados em produção.
- Containerizar e implantar modelos usando ferramentas como Docker e Kubernetes.
- Implementar monitoramento e registro para modelos implantados.
- Otimizar modelos para latência e escalabilidade em cenários do mundo real.
Domain-Specific Fine-Tuning for Finance
21 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a profissionais de nível intermediário que desejam obter habilidades práticas na personalização de modelos de IA para tarefas financeiras críticas.
Ao final deste treinamento, os participantes serão capazes de:
- Entenda os fundamentos do ajuste fino para aplicativos financeiros.
- Aproveite os modelos pré-treinados para tarefas específicas de domínio em finanças.
- Aplicar técnicas para deteção de fraude, avaliação de risco e geração de aconselhamento financeiro.
- Garantir a conformidade com regulamentos financeiros como GDPR e SOX.
- Implementar a segurança dos dados e práticas éticas de IA em aplicações financeiras.
Fine-Tuning Models and Large Language Models (LLMs)
14 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a profissionais de nível intermediário a avançado que desejam personalizar modelos pré-treinados para tarefas e conjuntos de dados específicos.
Ao final deste treinamento, os participantes serão capazes de:
- Compreender os princípios do ajuste fino e suas aplicações.
- Preparar conjuntos de dados para o ajuste fino de modelos pré-treinados.
- Ajuste fino de grandes modelos de linguagem (LLMs) para tarefas de PNL.
- Otimizar o desempenho do modelo e abordar desafios comuns.
Efficient Fine-Tuning with Low-Rank Adaptation (LoRA)
14 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a desenvolvedores de nível intermediário e profissionais de IA que desejam implementar estratégias de ajuste fino para grandes modelos sem a necessidade de recursos computacionais extensos.
No final deste treinamento, os participantes serão capazes de:
- Compreender os princípios da adaptação de baixo ranqueamento (LoRA).
- Implementar LoRA para um ajuste fino eficiente de modelos grandes.
- Otimizar o ajuste fino para ambientes com recursos limitados.
- Avaliar e implementar modelos ajustados por LoRA para aplicações práticas.
Fine-Tuning Multimodal Models
28 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a profissionais de nível avançado que desejam dominar o ajuste fino do modelo multimodal para soluções inovadoras de IA.
No final deste treinamento, os participantes serão capazes de:
- Compreender a arquitetura de modelos multimodais como CLIP e Flamingo.
- Prepare e pré-processe conjuntos de dados multimodais de forma eficaz.
- Ajuste fino de modelos multimodais para tarefas específicas.
- Otimizar modelos para aplicações e desempenho no mundo real.
Fine-Tuning for Natural Language Processing (NLP)
21 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a profissionais de nível intermediário que desejam aprimorar seus projetos de PNL por meio do ajuste fino eficaz de modelos de linguagem pré-treinados.
No final deste treinamento, os participantes serão capazes de:
- Compreender os fundamentos do ajuste fino para tarefas de PNL.
- Ajustar modelos pré-treinados, como GPT, BERT e T5, para aplicações específicas de PNL.
- Otimizar os hiperparâmetros para melhorar o desempenho do modelo.
- Avaliar e implementar modelos ajustados em cenários do mundo real.
Fine-Tuning DeepSeek LLM for Custom AI Models
21 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a pesquisadores de IA de nível avançado, engenheiros de aprendizado de máquina e desenvolvedores que desejam ajustar os modelos LLM DeepSeek para criar aplicativos de IA especializados adaptados a setores, domínios ou necessidades de negócios específicos.
No final deste treinamento, os participantes serão capazes de:
- Compreender a arquitetura e os recursos dos modelos DeepSeek, incluindo DeepSeek -R1 e DeepSeek -V3.
- Preparar conjuntos de dados e pré-processar dados para o ajuste fino.
- Afinar o DeepSeek LLM para aplicações específicas do domínio.
- Otimizar e implementar modelos ajustados de forma eficiente.
Fine-Tuning Large Language Models Using QLoRA
14 HorasEsta formação ao vivo, ministrada por um instrutor em Portugal (online ou presencial), é direcionada a engenheiros de aprendizado de máquina de nível intermediário a avançado, desenvolvedores de IA e cientistas de dados que desejam aprender como usar o QLoRA para ajustar eficientemente grandes modelos para tarefas específicas e personalizações.
No final desta formação, os participantes serão capazes de:
- Compreender a teoria por trás do QLoRA e das técnicas de quantização para LLMs (Large Language Models).
- Implementar o QLoRA no ajuste fino de grandes modelos linguísticos para aplicações específicas de domínio.
- Otimizar o desempenho do ajuste fino em recursos computacionais limitados usando quantização.
- Deploy e avaliar modelos ajustados finamente em aplicações do mundo real de forma eficiente.
Fine-Tuning with Reinforcement Learning from Human Feedback (RLHF)
14 HorasEsta formação ao vivo, ministrada por um instrutor em Portugal (online ou presencial), é direcionada a engenheiros de aprendizado de máquina avançados e pesquisadores de IA que desejam aplicar RLHF para ajustar modelos grandes de IA com melhor desempenho, segurança e alinhamento.
Ao final desta formação, os participantes serão capazes de:
- Compreender as bases teóricas do RLHF e por que é essencial no desenvolvimento moderno de IA.
- Implementar modelos de recompensa baseados em feedback humano para orientar processos de aprendizado por reforço.
- Ajustar modelos grandes de linguagem usando técnicas de RLHF para alinhar as saídas com as preferências humanas.
- Aplicar as melhores práticas para escalar fluxos de trabalho de RLHF para sistemas de IA de produção.
Optimizing Large Models for Cost-Effective Fine-Tuning
21 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a profissionais de nível avançado que desejam dominar técnicas para otimizar grandes modelos para um ajuste fino e econômico em cenários do mundo real.
No final deste treinamento, os participantes serão capazes de:
- Compreender os desafios do ajuste fino de grandes modelos.
- Aplicar técnicas de treinamento distribuído a grandes modelos.
- Aproveite a quantização do modelo e a poda para obter eficiência.
- Otimizar a utilização de hardware para tarefas de ajuste fino.
- Implantar modelos de ajuste fino de forma eficaz em ambientes de produção.
Prompt Engineering and Few-Shot Fine-Tuning
14 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a profissionais de nível intermediário que desejam aproveitar o poder da engenharia rápida e do aprendizado de poucos disparos para otimizar o desempenho do LLM para aplicativos do mundo real.
No final deste treinamento, os participantes serão capazes de:
- Compreender os princípios da engenharia de prompt e da aprendizagem de poucos disparos.
- Projetar prompts eficazes para várias tarefas de PNL.
- Aproveitar as técnicas de poucos disparos para adaptar LLMs com dados mínimos.
- Otimizar o desempenho do LLM para aplicações práticas.
Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs
14 HorasEste treinamento ao vivo, ministrado por um instrutor em Portugal (online ou presencial), é direcionado a cientistas de dados e engenheiros de IA de nível intermediário que desejam ajustar modelos de linguagem grandes de forma mais econômica e eficiente usando métodos como LoRA, Adapter Tuning e Prefix Tuning.
No final deste treinamento, os participantes serão capazes de:
- Compreender a teoria por trás das abordagens de ajuste fino com eficiência paramétrica.
- Implementar LoRA, Adapter Tuning e Prefix Tuning usando Hugging Face PEFT.
- Comparar as vantagens e desvantagens em termos de desempenho e custo dos métodos PEFT versus o ajuste fino completo.
- Implantar e escalar modelos de linguagem ajustados com requisitos reduzidos de computação e armazenamento.
Introduction to Transfer Learning
14 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a profissionais de aprendizado de máquina de nível iniciante a intermediário que desejam entender e aplicar técnicas de aprendizado de transferência para melhorar a eficiência e o desempenho em projetos de IA.
No final deste treinamento, os participantes serão capazes de:
- Compreender os principais conceitos e benefícios do aprendizado de transferência.
- Explore modelos pré-treinados populares e seus aplicativos.
- Realize o ajuste fino de modelos pré-treinados para tarefas personalizadas.
- Aplicar o aprendizado de transferência para resolver problemas do mundo real em PNL e visão computacional.
Troubleshooting Fine-Tuning Challenges
14 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a profissionais de nível avançado que desejam refinar suas habilidades no diagnóstico e solução de desafios de ajuste fino para modelos de aprendizado de máquina.
No final deste treinamento, os participantes serão capazes de:
- Diagnosticar problemas como overfitting, underfitting e desequilíbrio de dados.
- Implementar estratégias para melhorar a convergência do modelo.
- Otimizar pipelines de ajuste fino para melhor desempenho.
- Depurar processos de treinamento usando ferramentas e técnicas práticas.