Obrigado por enviar sua consulta! Um dos membros da nossa equipe entrará em contato com você em breve.
Obrigado por enviar sua reserva! Um dos membros da nossa equipe entrará em contato com você em breve.
Programa do Curso
Module 1: Introduction & AI Theory
- The Model-Based Approach: AI as an engineering problem.
- Demystifying the "Ghost in the Machine": What AI is vs. what it is not.
- The Evolution of Tech: From BERT to Transformers.
- Generative Domains: Analysis, Creative, Research, Image, Music, and Video.
- Data Governance: Pillars, audits, and the research trends (Multimodality, Agents, RAG, LLM vs. SLM).
- The Dark Side: Ethics, IP, bias, hallucinations, and social engineering.
- Risk Assessment: Data poisoning, Nepenthes, and the risk of "dumbing down" human talent.
- Model Taxonomy: Foundation vs. Task-specific; Closed vs. Open-weight models.
Module 2: Current Landscape & Toolset
- The Language Models Arena: Comparing performance and benchmarks.
- Professional Purchase Criteria: Cost, latency, privacy, and vendor lock-in.
- Big Models Overview: OpenAI ChatGPT, Perplexity, Gemini, and Grok.
- Niche & Small Models: Manus, SpecKit.
- Graphical Generation: Perchance
- Technical Constraints: Context rot vs. Token cost.
Module 3: Interaction - Prompt & Context Engineering
- The Verification Framework: Completeness, consistency, and verifiability.
- The RAG Strategy: When to use Retrieval-Augmented Generation vs. fine-tuning.
- ROI of AI: Maintenance costs vs. productivity gains.
- Advanced Techniques: 20+ Prompt & RAG methods with real-world examples.
- Experimental Frontiers: Triangulation, Map & Terrain overview, and Model-based generation.
Module 4: AI in Agile Project Management
- The Supercomputer Pilot: AI as an automation engine.
- Decision Making: Human responsibility vs. AI assistance.
- AIOps & GitOps: Integrating AI into the operational workflow.
- Toolchains & Pipelines: Creating a seamless AI-driven environment.
- Agile Artifacts: Backlog, roadmap, and requirements engineering.
- Precision Management: Capacity planning and estimation (Accuracy vs. Precision).
- Product Ownership: Ideation, feature analysis, and Vibe-coding risks.
- Risk & Scenarios: Planning for "What Ifs" and automated risk management.
- Refinement: Use Case and User Story description & refinement.
Requisitos
- Basic understanding of the Agile Manifesto and Scrum framework.
- Experience in project management, product ownership, or team leadership.
- No prior programming or AI engineering experience is required, though a general familiarity with digital tools is recommended.
Audience
- Agile Project Managers and Scrum Masters.
- Product Owners and Product Managers.
- IT Team Leaders and Delivery Managers.
- Business Analysts working in Agile environments.
- Operations Managers interested in AIOps.
7 Horas
Declaração de Clientes (2)
Exemplos práticos
Ryan Brookman - The Shaw Group Limited
Curso - Introduction to Artificial Intelligence for Non-technical users
Máquina Traduzida
Nós conseguimos usar as ferramentas.
Victor Aguero - PNUD/MICI
Curso - Aplicaciones Prácticas de Inteligencia Artificial para Personal Administrativo
Máquina Traduzida