Cursos de Fine-Tuning for Retrieval-Augmented Generation (RAG) Systems
Fine-Tuning para Sistemas de Geração Aumentada com Recuperação (RAG) é o processo de otimização da forma como os modelos linguísticos de grande porte recuperam e geram informações relevantes a partir de fontes externas para aplicações empresariais.
Esta formação presencial ou online, ministrada por um instrutor, destina-se a engenheiros de processamento de linguagem natural (NLP) intermediários e equipes de gestão do conhecimento que desejam ajustar pipelines RAG para melhorar o desempenho em casos de uso como resposta a perguntas, busca empresarial e resumos.
No final desta formação, os participantes serão capazes de:
- Compreender a arquitetura e o fluxo de trabalho dos sistemas RAG.
- Ajustar componentes recuperador e gerador para dados específicos do domínio.
- Avaliar o desempenho RAG e aplicar melhorias através das técnicas PEFT.
- Implantar sistemas RAG otimizados para uso interno ou de produção.
Formato do Curso
- Aula interativa e discussão.
- Muitos exercícios e prática.
- Implementação pratica em um ambiente de laboratório ao vivo.
Opções de Personalização do Curso
- Para solicitar uma formação personalizada para este curso, entre em contato conosco para agendar.
Programa do Curso
Introdução ao Retriever-Augmented Generation (RAG)
- O que é RAG e por que isso importa para a IA corporativa
- Componentes de um sistema RAG: retriever, generator, armazenamento de documentos
- Comparação com LLMs independentes e busca vetorial
Configurando uma Pipeline RAG
- Instalação e configuração do Haystack ou frameworks similares
- Ingestão e pré-processamento de documentos
- Conectando retrievers a bancos de dados vetoriais (e.g., FAISS, Pinecone)
Fine-Tuning o Retriever
- Treinamento de retrievers densos usando dados específicos do domínio
- Usando transformadores de sentenças e aprendizado contrastivo
- Avaliando a qualidade do retriever com precisão top-k
Fine-Tuning o Generator
- Seleção de modelos base (e.g., BART, T5, FLAN-T5)
- Tuning instrucional vs. fine-tuning supervisionado
- Métodos LoRA e PEFT para atualizações eficientes
Avaliação e Otimização
- Métricas para avaliar o desempenho RAG (e.g., BLEU, EM, F1)
- Latência, qualidade de recuperação e redução de alucinações
- Rastreamento de experimentos e melhoria iterativa
Implantação e Integração no Mundo Real
- Implantando RAG em motores de busca internos e chatbots
- Considerações sobre segurança, acesso a dados e governança
- Integração com APIs, painéis ou portais de conhecimento
Casos de Estudo e Melhores Práticas
- Casos de uso empresarial em finanças, saúde e jurídico
- Gerenciando o deslocamento do domínio e atualizações da base de conhecimento
- Direções futuras para sistemas LLM com recuperação aumentada
Resumo e Próximos Passos
Requisitos
- Compreensão dos conceitos de processamento de linguagem natural (PLN)
- Experiência com modelos de linguagem baseados em transformers
- Familiaridade com Python e fluxos de trabalho básicos de aprendizado de máquina
Público-alvo
- Engenheiros de PLN
- Equipes de gestão do conhecimento
Precisa de ajuda para escolher o curso certo?
Cursos de Fine-Tuning for Retrieval-Augmented Generation (RAG) Systems - Enquiry
Fine-Tuning for Retrieval-Augmented Generation (RAG) Systems - Solicitação de Consultoria
Solicitação de Consultoria
Próximas Formações Provisórias
Cursos Relacionados
Advanced Techniques in Transfer Learning
14 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a profissionais de aprendizado de máquina de nível avançado que desejam dominar técnicas de aprendizado de transferência de ponta e aplicá-las a problemas complexos do mundo real.
Ao final deste treinamento, os participantes serão capazes de:
- Compreender conceitos e metodologias avançadas na aprendizagem por transferência.
- Implementar técnicas de adaptação específicas do domínio para modelos pré-treinados.
- Aplicar a aprendizagem contínua para gerenciar tarefas e conjuntos de dados em evolução.
- Dominar o ajuste fino de várias tarefas para melhorar o desempenho do modelo em todas as tarefas.
Deploying Fine-Tuned Models in Production
21 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a profissionais de nível avançado que desejam implantar modelos ajustados de forma confiável e eficiente.
Ao final deste treinamento, os participantes serão capazes de:
- Compreender os desafios da implantação de modelos ajustados em produção.
- Containerizar e implantar modelos usando ferramentas como Docker e Kubernetes.
- Implementar monitoramento e registro para modelos implantados.
- Otimizar modelos para latência e escalabilidade em cenários do mundo real.
Domain-Specific Fine-Tuning for Finance
21 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a profissionais de nível intermediário que desejam obter habilidades práticas na personalização de modelos de IA para tarefas financeiras críticas.
Ao final deste treinamento, os participantes serão capazes de:
- Entenda os fundamentos do ajuste fino para aplicativos financeiros.
- Aproveite os modelos pré-treinados para tarefas específicas de domínio em finanças.
- Aplicar técnicas para deteção de fraude, avaliação de risco e geração de aconselhamento financeiro.
- Garantir a conformidade com regulamentos financeiros como GDPR e SOX.
- Implementar a segurança dos dados e práticas éticas de IA em aplicações financeiras.
Fine-Tuning Models and Large Language Models (LLMs)
14 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a profissionais de nível intermediário a avançado que desejam personalizar modelos pré-treinados para tarefas e conjuntos de dados específicos.
Ao final deste treinamento, os participantes serão capazes de:
- Compreender os princípios do ajuste fino e suas aplicações.
- Preparar conjuntos de dados para o ajuste fino de modelos pré-treinados.
- Ajuste fino de grandes modelos de linguagem (LLMs) para tarefas de PNL.
- Otimizar o desempenho do modelo e abordar desafios comuns.
Efficient Fine-Tuning with Low-Rank Adaptation (LoRA)
14 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a desenvolvedores de nível intermediário e profissionais de IA que desejam implementar estratégias de ajuste fino para grandes modelos sem a necessidade de recursos computacionais extensos.
No final deste treinamento, os participantes serão capazes de:
- Compreender os princípios da adaptação de baixo ranqueamento (LoRA).
- Implementar LoRA para um ajuste fino eficiente de modelos grandes.
- Otimizar o ajuste fino para ambientes com recursos limitados.
- Avaliar e implementar modelos ajustados por LoRA para aplicações práticas.
Fine-Tuning Multimodal Models
28 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a profissionais de nível avançado que desejam dominar o ajuste fino do modelo multimodal para soluções inovadoras de IA.
No final deste treinamento, os participantes serão capazes de:
- Compreender a arquitetura de modelos multimodais como CLIP e Flamingo.
- Prepare e pré-processe conjuntos de dados multimodais de forma eficaz.
- Ajuste fino de modelos multimodais para tarefas específicas.
- Otimizar modelos para aplicações e desempenho no mundo real.
Fine-Tuning for Natural Language Processing (NLP)
21 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a profissionais de nível intermediário que desejam aprimorar seus projetos de PNL por meio do ajuste fino eficaz de modelos de linguagem pré-treinados.
No final deste treinamento, os participantes serão capazes de:
- Compreender os fundamentos do ajuste fino para tarefas de PNL.
- Ajustar modelos pré-treinados, como GPT, BERT e T5, para aplicações específicas de PNL.
- Otimizar os hiperparâmetros para melhorar o desempenho do modelo.
- Avaliar e implementar modelos ajustados em cenários do mundo real.
Fine-Tuning DeepSeek LLM for Custom AI Models
21 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a pesquisadores de IA de nível avançado, engenheiros de aprendizado de máquina e desenvolvedores que desejam ajustar os modelos LLM DeepSeek para criar aplicativos de IA especializados adaptados a setores, domínios ou necessidades de negócios específicos.
No final deste treinamento, os participantes serão capazes de:
- Compreender a arquitetura e os recursos dos modelos DeepSeek, incluindo DeepSeek -R1 e DeepSeek -V3.
- Preparar conjuntos de dados e pré-processar dados para o ajuste fino.
- Afinar o DeepSeek LLM para aplicações específicas do domínio.
- Otimizar e implementar modelos ajustados de forma eficiente.
Fine-Tuning Large Language Models Using QLoRA
14 HorasEsta formação ao vivo, ministrada por um instrutor em Portugal (online ou presencial), é direcionada a engenheiros de aprendizado de máquina de nível intermediário a avançado, desenvolvedores de IA e cientistas de dados que desejam aprender como usar o QLoRA para ajustar eficientemente grandes modelos para tarefas específicas e personalizações.
No final desta formação, os participantes serão capazes de:
- Compreender a teoria por trás do QLoRA e das técnicas de quantização para LLMs (Large Language Models).
- Implementar o QLoRA no ajuste fino de grandes modelos linguísticos para aplicações específicas de domínio.
- Otimizar o desempenho do ajuste fino em recursos computacionais limitados usando quantização.
- Deploy e avaliar modelos ajustados finamente em aplicações do mundo real de forma eficiente.
Fine-Tuning Open-Source LLMs (LLaMA, Mistral, Qwen, etc.)
14 HorasEste treinamento ao vivo e ministrado por um instrutor em Portugal (online ou presencial) é direcionado a profissionais de nível intermediário em ML e desenvolvedores de IA que desejam ajustar e implantar modelos open-weight como LLaMA, Mistral e Qwen para aplicações específicas de negócios ou internas.
No final deste treinamento, os participantes serão capazes de:
- Compreender o ecossistema e as diferenças entre modelos de IA open-source.
- Preparar conjuntos de dados e configurações de ajuste fino para modelos como LLaMA, Mistral e Qwen.
- Executar pipelines de ajuste fino usando Hugging Face Transformers e PEFT.
- Avaliar, salvar e implantar modelos ajustados em ambientes seguros.
Fine-Tuning with Reinforcement Learning from Human Feedback (RLHF)
14 HorasEsta formação ao vivo, ministrada por um instrutor em Portugal (online ou presencial), é direcionada a engenheiros de aprendizado de máquina avançados e pesquisadores de IA que desejam aplicar RLHF para ajustar modelos grandes de IA com melhor desempenho, segurança e alinhamento.
Ao final desta formação, os participantes serão capazes de:
- Compreender as bases teóricas do RLHF e por que é essencial no desenvolvimento moderno de IA.
- Implementar modelos de recompensa baseados em feedback humano para orientar processos de aprendizado por reforço.
- Ajustar modelos grandes de linguagem usando técnicas de RLHF para alinhar as saídas com as preferências humanas.
- Aplicar as melhores práticas para escalar fluxos de trabalho de RLHF para sistemas de IA de produção.
Fine-Tuning Vision-Language Models (VLMs)
14 HorasThis instructor-led, live training in Portugal (online or onsite) is aimed at advanced-level computer vision engineers and AI developers who wish to fine-tune VLMs such as CLIP and Flamingo to improve performance on industry-specific visual-text tasks.
By the end of this training, participants will be able to:
- Understand the architecture and pretraining methods of vision-language models.
- Fine-tune VLMs for classification, retrieval, captioning, or multimodal QA.
- Prepare datasets and apply PEFT strategies to reduce resource usage.
- Evaluate and deploy customized VLMs in production environments.
Optimizing Large Models for Cost-Effective Fine-Tuning
21 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a profissionais de nível avançado que desejam dominar técnicas para otimizar grandes modelos para um ajuste fino e econômico em cenários do mundo real.
No final deste treinamento, os participantes serão capazes de:
- Compreender os desafios do ajuste fino de grandes modelos.
- Aplicar técnicas de treinamento distribuído a grandes modelos.
- Aproveite a quantização do modelo e a poda para obter eficiência.
- Otimizar a utilização de hardware para tarefas de ajuste fino.
- Implantar modelos de ajuste fino de forma eficaz em ambientes de produção.
Prompt Engineering and Few-Shot Fine-Tuning
14 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a profissionais de nível intermediário que desejam aproveitar o poder da engenharia rápida e do aprendizado de poucos disparos para otimizar o desempenho do LLM para aplicativos do mundo real.
No final deste treinamento, os participantes serão capazes de:
- Compreender os princípios da engenharia de prompt e da aprendizagem de poucos disparos.
- Projetar prompts eficazes para várias tarefas de PNL.
- Aproveitar as técnicas de poucos disparos para adaptar LLMs com dados mínimos.
- Otimizar o desempenho do LLM para aplicações práticas.
Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs
14 HorasEste treinamento ao vivo, ministrado por um instrutor em Portugal (online ou presencial), é direcionado a cientistas de dados e engenheiros de IA de nível intermediário que desejam ajustar modelos de linguagem grandes de forma mais econômica e eficiente usando métodos como LoRA, Adapter Tuning e Prefix Tuning.
No final deste treinamento, os participantes serão capazes de:
- Compreender a teoria por trás das abordagens de ajuste fino com eficiência paramétrica.
- Implementar LoRA, Adapter Tuning e Prefix Tuning usando Hugging Face PEFT.
- Comparar as vantagens e desvantagens em termos de desempenho e custo dos métodos PEFT versus o ajuste fino completo.
- Implantar e escalar modelos de linguagem ajustados com requisitos reduzidos de computação e armazenamento.