Cursos de Aprendizado de Máquinas (Machine Learning) | Cursos de Machine Learning

Cursos de Aprendizado de Máquinas (Machine Learning)

Os cursos de treinamento de Aprendizado por Máquina (ML) ao vivo, ministrados por instrutor, demonstram, por meio de práticas práticas, como aplicar técnicas e ferramentas de aprendizado de máquina para resolver problemas do mundo real em vários setores. Os cursos NobleProg ML abrangem diferentes linguagens de programação e frameworks, incluindo Python, linguagem R e Matlab. Os cursos Machine Learning são oferecidos para diversas aplicações do setor, incluindo finanças, bancos e seguros, e abrangem os fundamentos do Machine Learning, bem como abordagens mais avançadas, como o Deep Learning. O treinamento Machine Learning está disponível como "treinamento ao vivo no local" ou "treinamento remoto ao vivo". Treinamento ao vivo no local pode ser realizado localmente nas instalações do cliente em Portugal ou nos centros de treinamento corporativo da NobleProg em Portugal . O treinamento ao vivo remoto é realizado por meio de uma área de trabalho remota e interativa. NobleProg - seu provedor de treinamento local

Machine Translated

Declaração de Clientes

★★★★★
★★★★★

Programa de curso ML (Machine Learning)

Nome do Curso
Duração
Visão geral
Nome do Curso
Duração
Visão geral
7 horas
Visão geral
Este curso foi criado para administradores, solution architects, executivos de inovação, CTOs, e todos os interessados em aprender e conhecer o panorama geral da inteligência artificial aplicada aos problemas organizacionais.
7 horas
Visão geral
Este curso de treinamento é para pessoas que gostariam de aplicar técnicas básicas de Machine Learning em aplicações práticas.

Público

Cientistas de dados e estatísticos que têm alguma familiaridade com o aprendizado de máquina e sabem como programar R. A ênfase deste curso é nos aspectos práticos da preparação de dados / modelos, execução, análise post hoc e visualização. O objetivo é fornecer uma introdução prática ao aprendizado de máquina aos participantes interessados em aplicar os métodos no trabalho.

Exemplos específicos do setor são usados para tornar o treinamento relevante para o público.
14 horas
Visão geral
Este curso de treinamento é para pessoas que gostariam de aplicar o Machine Learning de forma pratica, o objetivo do treinamento é fornecer as ferramentas essenciais para a aplicaçao pratica e cotidiana dos conhecimentos em Machine Learning.

É um curso que vai dirigido à cientístas de dados e estatísticos que tem alguma familiarização com estatísticas e como programar em R (ou Python ou outra linguagem a sua escolha). A enfase deste curso é em aspectos práticos da preparação do modelo de dadosm execução, análise post hoc e visualização.
14 horas
Visão geral
O objetivo deste curso é fornecer uma proficiência básica na aplicação de métodos de Machine Learning na prática. Através do uso da Python programação Python e de suas várias bibliotecas, e com base em vários exemplos práticos, este curso ensina como usar os blocos de construção mais importantes do Machine Learning , como tomar decisões de modelagem de dados, interpretar as saídas dos algoritmos e validar os resultados.

Nosso objetivo é fornecer a você as habilidades para entender e usar as ferramentas mais fundamentais da caixa de ferramentas Machine Learning confiança e evitar as armadilhas comuns dos aplicativos da Data Science .
14 horas
Visão geral
O objetivo deste curso é fornecer uma proficiência básica na aplicação de métodos de Machine Learning na prática. Através do uso da plataforma de programação R e de suas diversas bibliotecas, e com base em vários exemplos práticos, este curso ensina como usar os blocos de construção mais importantes do Machine Learning , como tomar decisões de modelagem de dados, interpretar as saídas dos algoritmos e validar os resultados.

Nosso objetivo é fornecer a você as habilidades para entender e usar as ferramentas mais fundamentais da caixa de ferramentas Machine Learning confiança e evitar as armadilhas comuns dos aplicativos da Data Science .
21 horas
Visão geral
Rede Neural Artificial é um modelo computacional de dados utilizado no desenvolvimento de sistemas de Inteligência Artificial (IA) capazes de realizar tarefas "inteligentes". Redes neurais são comumente usadas em aplicações de Aprendizado de Máquina (ML), que são elas mesmas uma implementação de IA. Deep Learning é um subconjunto do ML.
21 horas
Visão geral
This course will be a combination of theory and practical work with specific examples used throughout the event.
21 horas
Visão geral
This course introduces machine learning methods in robotics applications.

It is a broad overview of existing methods, motivations and main ideas in the context of pattern recognition.

After a short theoretical background, participants will perform simple exercise using open source (usually R) or any other popular software.
21 horas
Visão geral
MATLAB is a numerical computing environment and programming language developed by MathWorks.
14 horas
Visão geral
The aim of this course is to provide a basic proficiency in applying Machine Learning methods in practice. Through the use of the Scala programming language and its various libraries, and based on a multitude of practical examples this course teaches how to use the most important building blocks of Machine Learning, how to make data modeling decisions, interpret the outputs of the algorithms and validate the results.

Our goal is to give you the skills to understand and use the most fundamental tools from the Machine Learning toolbox confidently and avoid the common pitfalls of Data Sciences applications.
14 horas
Visão geral
R is an open-source free programming language for statistical computing, data analysis, and graphics. R is used by a growing number of managers and data analysts inside corporations and academia. R has a wide variety of packages for data mining.
21 horas
Visão geral
O PredictionIO é uma ferramenta de código aberto para o Machine Learning, contruída em um stack de código aberto de alta qualidade, o objetivo do curso é que o participante possa entender os conceitos chave da aplicação de Machine Learning cm o PredictionIO.
35 horas
Visão geral
Este curso é criado para pessoas que nao tem nenhuma experiência com probabilidade e estatística, e o objetivo é proporcionar todas as ferramentas sumamente necessárias para que os participates tenham as capacidades e conhecimentos iniciais estatísticos e probabilísticos para enfrentar os problemas organizacionais.
7 horas
Visão geral
The Wolfram System's integrated environment makes it an efficient tool for both analyzing and presenting data. This course covers aspects of the Wolfram Language relevant to analytics, including statistical computation, visualization, data import and export and automatic generation of reports.
21 horas
Visão geral
Course is dedicated for those who would like to know an alternative program to the commercial MATLAB package. The three-day training provides comprehensive information on moving around the environment and performing the OCTAVE package for data analysis and engineering calculations. The training recipients are beginners but also those who know the program and would like to systematize their knowledge and improve their skills. Knowledge of other programming languages is not required, but it will greatly facilitate the learners' acquisition of knowledge. The course will show you how to use the program in many practical examples.
21 horas
Visão geral
This training course is for people that would like to apply Machine Learning in practical applications for their team. The training will not dive into technicalities and revolve around basic concepts and business/operational applications of the same.

Target Audience

- Investors and AI entrepreneurs
- Managers and Engineers whose company is venturing into AI space
- Business Analysts & Investors
7 horas
Visão geral
Snorkel is a system for rapidly creating, modeling, and managing training data. It focuses on accelerating the development of structured or "dark" data extraction applications for domains in which large labeled training sets are not available or easy to obtain.

In this instructor-led, live training, participants will learn techniques for extracting value from unstructured data such as text, tables, figures, and images through modeling of training data with Snorkel.

By the end of this training, participants will be able to:

- Programmatically create training sets to enable the labeling of massive training sets
- Train high-quality end models by first modeling noisy training sets
- Use Snorkel to implement weak supervision techniques and apply data programming to weakly-supervised machine learning systems

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
28 horas
Visão geral
The aim of this course is to provide general proficiency in applying Machine Learning methods in practice. Through the use of the Python programming language and its various libraries, and based on a multitude of practical examples this course teaches how to use the most important building blocks of Machine Learning, how to make data modeling decisions, interpret the outputs of the algorithms and validate the results.

Our goal is to give you the skills to understand and use the most fundamental tools from the Machine Learning toolbox confidently and avoid the common pitfalls of Data Sciences applications.
14 horas
Visão geral
Encog is an open-source machine learning framework for Java and .Net.

In this instructor-led, live training, participants will learn advanced machine learning techniques for building accurate neural network predictive models.

By the end of this training, participants will be able to:

- Implement different neural networks optimization techniques to resolve underfitting and overfitting
- Understand and choose from a number of neural network architectures
- Implement supervised feed forward and feedback networks

Audience

- Developers
- Analysts
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14 horas
Visão geral
Encog is an open-source machine learning framework for Java and .Net.

In this instructor-led, live training, participants will learn how to create various neural network components using ENCOG. Real-world case studies will be discussed and machine language based solutions to these problems will be explored.

By the end of this training, participants will be able to:

- Prepare data for neural networks using the normalization process
- Implement feed forward networks and propagation training methodologies
- Implement classification and regression tasks
- Model and train neural networks using Encog's GUI based workbench
- Integrate neural network support into real-world applications

Audience

- Developers
- Analysts
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
21 horas
Visão geral
In this instructor-led, live training, participants will learn how to use the right machine learning and NLP (Natural Language Processing) techniques to extract value from text-based data.

By the end of this training, participants will be able to:

- Solve text-based data science problems with high-quality, reusable code
- Apply different aspects of scikit-learn (classification, clustering, regression, dimensionality reduction) to solve problems
- Build effective machine learning models using text-based data
- Create a dataset and extract features from unstructured text
- Visualize data with Matplotlib
- Build and evaluate models to gain insight
- Troubleshoot text encoding errors

Audience

- Developers
- Data Scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14 horas
Visão geral
In this instructor-led, live training, participants will learn how to use the iOS Machine Learning (ML) technology stack as they step through the creation and deployment of an iOS mobile app.

By the end of this training, participants will be able to:

- Create a mobile app capable of image processing, text analysis and speech recognition
- Access pre-trained ML models for integration into iOS apps
- Create a custom ML model
- Add Siri Voice support to iOS apps
- Understand and use frameworks such as coreML, Vision, CoreGraphics, and GamePlayKit
- Use languages and tools such as Python, Keras, Caffee, Tensorflow, sci-kit learn, libsvm, Anaconda, and Spyder

Audience

- Developers

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
28 horas
Visão geral
In this instructor-led, live training, participants will learn how to apply machine learning techniques and tools for solving real-world problems in the banking industry. R will be used as the programming language.

Participants first learn the key principles, then put their knowledge into practice by building their own machine learning models and using them to complete a number of live projects.

Audience

- Developers
- Data scientists
- Banking professionals with a technical background

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
21 horas
Visão geral
Machine Learning is a branch of Artificial Intelligence wherein computers have the ability to learn without being explicitly programmed. Python is a programming language famous for its clear syntax and readability. It offers an excellent collection of well-tested libraries and techniques for developing machine learning applications.

In this instructor-led, live training, participants will learn how to apply machine learning techniques and tools for solving real-world problems in the banking industry.

Participants first learn the key principles, then put their knowledge into practice by building their own machine learning models and using them to complete a number of team projects.

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14 horas
Visão geral
The Apache OpenNLP library is a machine learning based toolkit for processing natural language text. It supports the most common NLP tasks, such as language detection, tokenization, sentence segmentation, part-of-speech tagging, named entity extraction, chunking, parsing and coreference resolution.

In this instructor-led, live training, participants will learn how to create models for processing text based data using OpenNLP. Sample training data as well customized data sets will be used as the basis for the lab exercises.

By the end of this training, participants will be able to:

- Install and configure OpenNLP
- Download existing models as well as create their own
- Train the models on various sets of sample data
- Integrate OpenNLP with existing Java applications

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14 horas
Visão geral
In Python Machine Learning, the Text Summarization feature is able to read the input text and produce a text summary. This capability is available from the command-line or as a Python API/Library. One exciting application is the rapid creation of executive summaries; this is particularly useful for organizations that need to review large bodies of text data before generating reports and presentations.

In this instructor-led, live training, participants will learn to use Python to create a simple application that auto-generates a summary of input text.

By the end of this training, participants will be able to:

- Use a command-line tool that summarizes text.
- Design and create Text Summarization code using Python libraries.
- Evaluate three Python summarization libraries: sumy 0.7.0, pysummarization 1.0.4, readless 1.0.17

Audience

- Developers
- Data Scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
21 horas
Visão geral
Machine learning is a branch of Artificial Intelligence wherein computers have the ability to learn without being explicitly programmed. Python is a programming language famous for its clear syntax and readability. It offers an excellent collection of well-tested libraries and techniques for developing machine learning applications.

In this instructor-led, live training, participants will learn how to apply machine learning techniques and tools for solving real-world problems in the finance industry.

Participants first learn the key principles, then put their knowledge into practice by building their own machine learning models and using them to complete a number of team projects.

By the end of this training, participants will be able to:

- Understand the fundamental concepts in machine learning
- Learn the applications and uses of machine learning in finance
- Develop their own algorithmic trading strategy using machine learning with Python

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
28 horas
Visão geral
Machine learning is a branch of Artificial Intelligence wherein computers have the ability to learn without being explicitly programmed. R is a popular programming language in the financial industry. It is used in financial applications ranging from core trading programs to risk management systems.

In this instructor-led, live training, participants will learn how to apply machine learning techniques and tools for solving real-world problems in the finance industry. R will be used as the programming language.

Participants first learn the key principles, then put their knowledge into practice by building their own machine learning models and using them to complete a number of team projects.

By the end of this training, participants will be able to:

- Understand the fundamental concepts in machine learning
- Learn the applications and uses of machine learning in finance
- Develop their own algorithmic trading strategy using machine learning with R

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
28 horas
Visão geral
Cortana Intelligence Suite is a bundle of integrated products and services on the Microsoft Azure Cloud that enable entities to transform data into intelligent actions.

In this instructor-led, live training, participants will learn how to use the components that are part of the Cortana Intelligence Suite to build data-driven intelligent applications.

By the end of this training, participants will be able to:

- Learn how to use Cortana Intelligence Suite tools
- Acquire the latest knowledge of data management and analytics
- Use Cortana components to turn data into intelligent action
- Use Cortana to build applications from scratch and launch it on the cloud

Audience

- Data scientists
- Programmers
- Developers
- Managers
- Architects

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14 horas
Visão geral
AI is a collection of technologies for building intelligent systems capable of understanding data and the activities surrounding the data to make "intelligent decisions". For Telecom providers, building applications and services that make use of AI could open the door for improved operations and servicing in areas such as maintenance and network optimization.

In this course we examine the various technologies that make up AI and the skill sets required to put them to use. Throughout the course, we examine AI's specific applications within the Telecom industry.

Audience

- Network engineers
- Network operations personnel
- Telecom technical managers

Format of the course

- Part lecture, part discussion, hands-on exercises
Cursos de fim de semana de ML (Machine Learning), Treinamento tardiurno de Aprendizado de Máquinas (Machine Learning), Treinamento em grupo de Machine Learning (ML), Machine Learning (ML) guiado por instrutor, Treinamento de Aprendizado de Máquinas (Machine Learning) de fim de semana, Cursos de Aprendizado de Máquinas (Machine Learning) tardiurnos, coaching de Machine Learning (ML), Instrutor de Aprendizado de Máquinas (Machine Learning), Treinador de ML (Machine Learning), Cursos de treinamento de Machine Learning (ML), Aulas de Machine Learning (ML), Machine Learning (ML) no local do cliente, Cursos privados de Machine Learning (ML), Treinamento individual de ML (Machine Learning)Cursos de fim de semana de Machine Learning, Treinamento tardiurno de Machine Learning (ML), Treinamento em grupo de Machine Learning, Machine Learning guiado por instrutor, Treinamento de ML (Machine Learning) de fim de semana, Cursos de Machine Learning tardiurnos, coaching de Machine Learning (ML), Instrutor de Machine Learning (ML), Treinador de Machine Learning (ML), Cursos de treinamento de ML (Machine Learning), Aulas de Machine Learning, Machine Learning no local do cliente, Cursos privados de ML (Machine Learning), Treinamento individual de Machine Learning (ML)

Ofertas Especiais

Newsletter Ofertas Especiais

Nós respeitamos a privacidade dos seus dados. Nós não vamos repassar ou vender o seu email para outras empresas.
Você sempre poderá editar as suas preferências ou cancelar a sua inscriçāo.

Nossos Clientes

is growing fast!

We are looking for a good mixture of IT and soft skills in Portugal!

As a NobleProg Trainer you will be responsible for:

  • delivering training and consultancy Worldwide
  • preparing training materials
  • creating new courses outlines
  • delivering consultancy
  • quality management

At the moment we are focusing on the following areas:

  • Statistic, Forecasting, Big Data Analysis, Data Mining, Evolution Alogrithm, Natural Language Processing, Machine Learning (recommender system, neural networks .etc...)
  • SOA, BPM, BPMN
  • Hibernate/Spring, Scala, Spark, jBPM, Drools
  • R, Python
  • Mobile Development (iOS, Android)
  • LAMP, Drupal, Mediawiki, Symfony, MEAN, jQuery
  • You need to have patience and ability to explain to non-technical people

To apply, please create your trainer-profile by going to the link below:

Apply now!

This site in other countries/regions