Curso de Fine-Tuning Defense AI for Autonomous Systems and Surveillance
Fine-tuning is a critical process for adapting AI models to mission-specific defense applications, such as autonomous navigation and real-time surveillance.
This instructor-led, live training (online or onsite) is aimed at advanced-level defense AI engineers and military technology developers who wish to fine-tune deep learning models for use in autonomous vehicles, drones, and surveillance systems while meeting stringent security and reliability standards.
By the end of this training, participants will be able to:
- Fine-tune computer vision and sensor fusion models for surveillance and targeting tasks.
- Adapt autonomous AI systems to changing environments and mission profiles.
- Implement robust validation and fail-safe mechanisms in model pipelines.
- Ensure alignment with defense-specific compliance, safety, and security standards.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Programa do Curso
Overview of AI in Defense Applications
- Autonomous systems, UAVs, and real-time surveillance
- AI use cases in defense: navigation, tracking, reconnaissance
- Overview of AI model adaptation in mission-critical environments
Preparing Data for Fine-Tuning
- Working with sensor data: lidar, radar, thermal, and video feeds
- Labeling strategies for object detection and target recognition
- Data augmentation and anonymization in military contexts
Fine-Tuning AI Models for Perception and Control
- Vision models for real-time object detection and segmentation
- Fusion models for combining multi-sensor inputs
- Policy tuning for autonomous navigation and obstacle avoidance
Security, Safety, and Redundancy in AI Models
- Building resilient models with adversarial defense techniques
- Fail-safe design and anomaly detection during inference
- Securing model pipelines against tampering and spoofing
Testing and Simulation in Defense Environments
- Using synthetic data and digital twins for validation
- Stress testing under adversarial and extreme conditions
- Sim-to-real transfer in operational simulations
Compliance and Defense Standards
- AI assurance frameworks for defense deployments
- Security and ethics in autonomous defense applications
- Documenting compliance with operational and legal mandates
Deployment and Monitoring in the Field
- On-device inference and edge AI optimization
- Telemetry, feedback loops, and continual model updates
- Case studies from real-world defense AI systems
Summary and Next Steps
Requisitos
- An understanding of deep learning and computer vision architectures
- Experience with AI model training and evaluation using frameworks like TensorFlow or PyTorch
- Knowledge of defense-grade system requirements and security protocols
Audience
- Defense AI engineers
- Military tech developers
- Autonomous systems and surveillance platform architects
Precisa de ajuda para escolher o curso certo?
Curso de Fine-Tuning Defense AI for Autonomous Systems and Surveillance - Enquiry
Fine-Tuning Defense AI for Autonomous Systems and Surveillance - Solicitação de Consultoria
Solicitação de Consultoria
Próximas Formações Provisórias
Cursos Relacionados
Advanced Techniques in Transfer Learning
14 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a profissionais de aprendizado de máquina de nível avançado que desejam dominar técnicas de aprendizado de transferência de ponta e aplicá-las a problemas complexos do mundo real.
Ao final deste treinamento, os participantes serão capazes de:
- Compreender conceitos e metodologias avançadas na aprendizagem por transferência.
- Implementar técnicas de adaptação específicas do domínio para modelos pré-treinados.
- Aplicar a aprendizagem contínua para gerenciar tarefas e conjuntos de dados em evolução.
- Dominar o ajuste fino de várias tarefas para melhorar o desempenho do modelo em todas as tarefas.
Deploying Fine-Tuned Models in Production
21 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a profissionais de nível avançado que desejam implantar modelos ajustados de forma confiável e eficiente.
Ao final deste treinamento, os participantes serão capazes de:
- Compreender os desafios da implantação de modelos ajustados em produção.
- Containerizar e implantar modelos usando ferramentas como Docker e Kubernetes.
- Implementar monitoramento e registro para modelos implantados.
- Otimizar modelos para latência e escalabilidade em cenários do mundo real.
Domain-Specific Fine-Tuning for Finance
21 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a profissionais de nível intermediário que desejam obter habilidades práticas na personalização de modelos de IA para tarefas financeiras críticas.
Ao final deste treinamento, os participantes serão capazes de:
- Entenda os fundamentos do ajuste fino para aplicativos financeiros.
- Aproveite os modelos pré-treinados para tarefas específicas de domínio em finanças.
- Aplicar técnicas para deteção de fraude, avaliação de risco e geração de aconselhamento financeiro.
- Garantir a conformidade com regulamentos financeiros como GDPR e SOX.
- Implementar a segurança dos dados e práticas éticas de IA em aplicações financeiras.
Fine-Tuning Models and Large Language Models (LLMs)
14 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a profissionais de nível intermediário a avançado que desejam personalizar modelos pré-treinados para tarefas e conjuntos de dados específicos.
Ao final deste treinamento, os participantes serão capazes de:
- Compreender os princípios do ajuste fino e suas aplicações.
- Preparar conjuntos de dados para o ajuste fino de modelos pré-treinados.
- Ajuste fino de grandes modelos de linguagem (LLMs) para tarefas de PNL.
- Otimizar o desempenho do modelo e abordar desafios comuns.
Efficient Fine-Tuning with Low-Rank Adaptation (LoRA)
14 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a desenvolvedores de nível intermediário e profissionais de IA que desejam implementar estratégias de ajuste fino para grandes modelos sem a necessidade de recursos computacionais extensos.
No final deste treinamento, os participantes serão capazes de:
- Compreender os princípios da adaptação de baixo ranqueamento (LoRA).
- Implementar LoRA para um ajuste fino eficiente de modelos grandes.
- Otimizar o ajuste fino para ambientes com recursos limitados.
- Avaliar e implementar modelos ajustados por LoRA para aplicações práticas.
Fine-Tuning Multimodal Models
28 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a profissionais de nível avançado que desejam dominar o ajuste fino do modelo multimodal para soluções inovadoras de IA.
No final deste treinamento, os participantes serão capazes de:
- Compreender a arquitetura de modelos multimodais como CLIP e Flamingo.
- Prepare e pré-processe conjuntos de dados multimodais de forma eficaz.
- Ajuste fino de modelos multimodais para tarefas específicas.
- Otimizar modelos para aplicações e desempenho no mundo real.
Fine-Tuning for Natural Language Processing (NLP)
21 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a profissionais de nível intermediário que desejam aprimorar seus projetos de PNL por meio do ajuste fino eficaz de modelos de linguagem pré-treinados.
No final deste treinamento, os participantes serão capazes de:
- Compreender os fundamentos do ajuste fino para tarefas de PNL.
- Ajustar modelos pré-treinados, como GPT, BERT e T5, para aplicações específicas de PNL.
- Otimizar os hiperparâmetros para melhorar o desempenho do modelo.
- Avaliar e implementar modelos ajustados em cenários do mundo real.
Fine-Tuning DeepSeek LLM for Custom AI Models
21 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a pesquisadores de IA de nível avançado, engenheiros de aprendizado de máquina e desenvolvedores que desejam ajustar os modelos LLM DeepSeek para criar aplicativos de IA especializados adaptados a setores, domínios ou necessidades de negócios específicos.
No final deste treinamento, os participantes serão capazes de:
- Compreender a arquitetura e os recursos dos modelos DeepSeek, incluindo DeepSeek -R1 e DeepSeek -V3.
- Preparar conjuntos de dados e pré-processar dados para o ajuste fino.
- Afinar o DeepSeek LLM para aplicações específicas do domínio.
- Otimizar e implementar modelos ajustados de forma eficiente.
Fine-Tuning Large Language Models Using QLoRA
14 HorasEsta formação ao vivo, ministrada por um instrutor em Portugal (online ou presencial), é direcionada a engenheiros de aprendizado de máquina de nível intermediário a avançado, desenvolvedores de IA e cientistas de dados que desejam aprender como usar o QLoRA para ajustar eficientemente grandes modelos para tarefas específicas e personalizações.
No final desta formação, os participantes serão capazes de:
- Compreender a teoria por trás do QLoRA e das técnicas de quantização para LLMs (Large Language Models).
- Implementar o QLoRA no ajuste fino de grandes modelos linguísticos para aplicações específicas de domínio.
- Otimizar o desempenho do ajuste fino em recursos computacionais limitados usando quantização.
- Deploy e avaliar modelos ajustados finamente em aplicações do mundo real de forma eficiente.
Fine-Tuning with Reinforcement Learning from Human Feedback (RLHF)
14 HorasEsta formação ao vivo, ministrada por um instrutor em Portugal (online ou presencial), é direcionada a engenheiros de aprendizado de máquina avançados e pesquisadores de IA que desejam aplicar RLHF para ajustar modelos grandes de IA com melhor desempenho, segurança e alinhamento.
Ao final desta formação, os participantes serão capazes de:
- Compreender as bases teóricas do RLHF e por que é essencial no desenvolvimento moderno de IA.
- Implementar modelos de recompensa baseados em feedback humano para orientar processos de aprendizado por reforço.
- Ajustar modelos grandes de linguagem usando técnicas de RLHF para alinhar as saídas com as preferências humanas.
- Aplicar as melhores práticas para escalar fluxos de trabalho de RLHF para sistemas de IA de produção.
Optimizing Large Models for Cost-Effective Fine-Tuning
21 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a profissionais de nível avançado que desejam dominar técnicas para otimizar grandes modelos para um ajuste fino e econômico em cenários do mundo real.
No final deste treinamento, os participantes serão capazes de:
- Compreender os desafios do ajuste fino de grandes modelos.
- Aplicar técnicas de treinamento distribuído a grandes modelos.
- Aproveite a quantização do modelo e a poda para obter eficiência.
- Otimizar a utilização de hardware para tarefas de ajuste fino.
- Implantar modelos de ajuste fino de forma eficaz em ambientes de produção.
Prompt Engineering and Few-Shot Fine-Tuning
14 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a profissionais de nível intermediário que desejam aproveitar o poder da engenharia rápida e do aprendizado de poucos disparos para otimizar o desempenho do LLM para aplicativos do mundo real.
No final deste treinamento, os participantes serão capazes de:
- Compreender os princípios da engenharia de prompt e da aprendizagem de poucos disparos.
- Projetar prompts eficazes para várias tarefas de PNL.
- Aproveitar as técnicas de poucos disparos para adaptar LLMs com dados mínimos.
- Otimizar o desempenho do LLM para aplicações práticas.
Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs
14 HorasEste treinamento ao vivo, ministrado por um instrutor em Portugal (online ou presencial), é direcionado a cientistas de dados e engenheiros de IA de nível intermediário que desejam ajustar modelos de linguagem grandes de forma mais econômica e eficiente usando métodos como LoRA, Adapter Tuning e Prefix Tuning.
No final deste treinamento, os participantes serão capazes de:
- Compreender a teoria por trás das abordagens de ajuste fino com eficiência paramétrica.
- Implementar LoRA, Adapter Tuning e Prefix Tuning usando Hugging Face PEFT.
- Comparar as vantagens e desvantagens em termos de desempenho e custo dos métodos PEFT versus o ajuste fino completo.
- Implantar e escalar modelos de linguagem ajustados com requisitos reduzidos de computação e armazenamento.
Introduction to Transfer Learning
14 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a profissionais de aprendizado de máquina de nível iniciante a intermediário que desejam entender e aplicar técnicas de aprendizado de transferência para melhorar a eficiência e o desempenho em projetos de IA.
No final deste treinamento, os participantes serão capazes de:
- Compreender os principais conceitos e benefícios do aprendizado de transferência.
- Explore modelos pré-treinados populares e seus aplicativos.
- Realize o ajuste fino de modelos pré-treinados para tarefas personalizadas.
- Aplicar o aprendizado de transferência para resolver problemas do mundo real em PNL e visão computacional.
Troubleshooting Fine-Tuning Challenges
14 HorasEste treinamento ao vivo conduzido por instrutor em Portugal (no local ou remoto) é destinado a profissionais de nível avançado que desejam refinar suas habilidades no diagnóstico e solução de desafios de ajuste fino para modelos de aprendizado de máquina.
No final deste treinamento, os participantes serão capazes de:
- Diagnosticar problemas como overfitting, underfitting e desequilíbrio de dados.
- Implementar estratégias para melhorar a convergência do modelo.
- Otimizar pipelines de ajuste fino para melhor desempenho.
- Depurar processos de treinamento usando ferramentas e técnicas práticas.