Programa do Curso

1. Compreender a classificação usando vizinhos mais próximos

  • O algoritmo kNN
  • Cálculo de Distância
  • Escolhendo um k apropriado
  • Preparando dados para uso com kNN
  • Por que o algoritmo kNN é preguiçoso?

2. Compreendendo o ingênuo Bayes

  • Conceitos básicos de métodos bayesianos
  • Probabilidade
  • Probabilidade conjunta
  • Probabilidade condicional com teorema de Bayes
  • O ingênuo algoritmo de Bayes
  • A ingênua classificação de Bayes
  • O estimador de Laplace
  • Usando recursos numéricos com Bayes ingênuo

3. Compreender as árvores de decisão

  • Dividir e conquistar
  • O algoritmo de árvore de decisão C5.0
  • Escolhendo a melhor divisão
  • Podando a árvore de decisão

4. Compreender as regras de classificação

  • Separar e conquistar
  • O algoritmo de uma regra
  • O algoritmo RIPPER
  • Regras das árvores de decisão

5. Compreendendo a regressão

  • Regressão linear simples
  • Estimativa de mínimos quadrados ordinários
  • Correlações
  • Regressão linear múltipla

6. Compreender árvores de regressão e árvores modelo

  • Adicionando regressão às árvores

7. Compreendendo as redes neurais

  • Dos neurônios biológicos aos artificiais
  • Funções de ativação
  • Topologia de rede
  • O número de camadas
  • A direção da viagem de informação
  • O número de nós em cada camada
  • Treinando redes neurais com retropropagação

8. Compreendendo as máquinas de vetores de suporte

  • Classificação com hiperplanos
  • Encontrando a margem máxima
  • O caso de dados linearmente separáveis
  • O caso de dados não linearmente separáveis
  • Usando kernels para espaços não lineares

9. Compreender as regras de associação

  • O algoritmo Apriori para aprendizagem de regras de associação
  • Medindo o interesse das regras – apoio e confiança
  • Construindo um conjunto de regras com o princípio Apriori

10. Compreendendo o clustering

  • Clustering como uma tarefa de aprendizado de máquina
  • O algoritmo k-means para clustering
  • Usando distância para atribuir e atualizar clusters
  • Escolhendo o número apropriado de clusters

11. Medindo o desempenho para classificação

  • Trabalhando com dados de previsão de classificação
  • Uma análise mais detalhada das matrizes de confusão
  • Usando matrizes de confusão para medir o desempenho
  • Além da precisão – outras medidas de desempenho
  • A estatística kappa
  • Sensibilidade e especificidade
  • Precisão e recall
  • A medida F
  • Visualizando compensações de desempenho
  • Curvas ROC
  • Estimando o desempenho futuro
  • O método de resistência
  • Validação cruzada
  • Bootstrap amostragem

12. Ajustando modelos de estoque para melhor desempenho

  • Usando o cursor para ajuste automatizado de parâmetros
  • Criando um modelo simples e ajustado
  • Personalizando o processo de ajuste
  • Melhorando o desempenho do modelo com meta-aprendizado
  • Compreendendo conjuntos
  • Ensacamento
  • Impulsionando
  • Florestas aleatórias
  • Treinando florestas aleatórias
  • Avaliando o desempenho aleatório da floresta

13. Deep Learning

  • Três classes de Deep Learning
  • Autoencoders profundos
  • Profundo pré-treinado Neural Networks
  • Redes de empilhamento profundo

14. Discussão de áreas de aplicação específicas

 21 horas

Declaração de Clientes (1)

Cursos Relacionados

Categorias Relacionadas